www lc8 com

巨大的翅膀也因羽毛厚重变得展翅困难而笨拙,难以高飞。

  • 博客访问: 764572
  • 博文数量: 728
  • 用 户 组: 普通用户
  • 注册时间:2019-06-19 15:36:44
  • 认证徽章:
个人简介

针对检查发现的问题,要组织专门的分析研究,查清问题的真正原因,据实依规对责任单位和责任人进行处理,并建立“十严禁”检查问题库。

文章分类

全部博文(989)

文章存档

2015年(977)

2014年(347)

2013年(100)

2012年(779)

订阅

分类: 中华网

www lc8 com,第2课 古代手工业的进步课程标准列举古代中国手工业发展的基本史实,认识古代中国手工业发展的特征。PAGE第一章导数及其应用单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则f′(x0)等于(  ).A.B.C.1D.-12.等于(  ).A.-2ln2B.2ln2C.-ln2D.3.若对于任意x,有f′(x)=4x3,f(1)=3,则此函数的解析式为(  ).A.f(x)=x4-1B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4+24.抛物线在点Q(2,1)处的切线方程为(  ).A.-x+y+1=0B.x+y-3=0C.x-y+1=0D.x+y-1=05.函数f(x)=x3-2x+3的图象在x=1处的切线与圆x2+y2=8的位置关系是(  ).A.相切B.相交且过圆心C.相交但不过圆心D.相离6.若(2x-3x2)dx=0,则k等于(  ).A.0B.1C.0或1D.7.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(  ).A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>68.函数f(x)的图象如图所示,下列数值排序正确的是(  ).A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)9.已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(  ).A.B.C.D.10.若曲线在点(a,)处的切线与两个坐标轴围成的三角形的面积为18,则a等于(  ).A.64B.32C.16D.8二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.经过点(2,0)且与曲线相切的直线方程为____________.12.三次函数f(x),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)=__________.13.在区间上,函数f(x)=x2+px+q与在同一点处取得相同的极小值,那么函数f(x)在上的最大值为__________.14.函数y=x2(x>0)的图象在点(ak,)处的切线与x轴交点的横坐标为ak+1,其中k∈N+,若a1=16,则a1+a3+a5的值是________.15.下列四个命题中正确的命题的个数为________.①若,则f′(0)=0;②若函数f(x)=2x2+1图象上与点(1,3)邻近的一点为(1+Δx,3+Δy),则;③加速度是动点位移函数s(t)对时间t的导数;④曲线y=x3在(0,0)处没有切线.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)求由曲线y=2x-x2,y=2x2-4x所围成的封闭图形的面积.17.(15分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围. 参考答案1.答案:D 原等式可化为=-f′(x0)=1,因此f′(x0)=-答案:D =ln4-ln2=答案:D f′(x)=4x3,∴f(x)=x4+k.又f(1)=3,∴k=2,∴f(x)=x4+答案:A ,∴,又切线过点Q(2,1),∴切线方程为y-1=x-2,即-x+y-1=答案:C 切线方程为x-y+1=0,圆心到直线的距离为,所以直线与圆相交但不过圆心.6.答案:C 因为(x2-x3)′=2x-3x2,所以(2x-3x2)dx=(x2-x3)=k2-k3=0.所以k=0或k=答案:D f′(x)=3x2+2ax+a+6,因为f(x)既有极大值又有极小值,所以Δ=4a2-4×3×(a即a2-3a-18>0.解得a>6或a8.答案:B f′(2),f′(3)是x分别为2,3时对应图象上点的切线的斜率,f(3)-f(2)=,∴f(3)-f(2)是图象上x为2和3对应两点连线的斜率,故选答案:D ∵,∴-1≤y′<0,即曲线在点P处的切线的斜率-1≤k<0,∴-1≤tanα<0,又α[0,π),∴π≤α<π.10.答案:A ,∴切线斜率,切线方程是(x-a),令x=0,得,令利来国际旗舰版中国海关总署28日发布公告,强调日本新潟大米在进口时应当符合中国食品安全、植物卫生法律法规等要求。5.规划断面管廊规划断面根据不同的入廊管线情况,主要分为单舱、双舱、三舱、四舱等不同型式。

PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即利来国际旗舰版中国缸油人学(华东)硕士学位论文第一章前言1.1论文研究的目的及意义当今世界油气勘探与开发主要围绕两个主题:一是提高油气探明率及勘探效益:二是提高油气采收率及开发效益。其次可以更好的指导生产,提供给油田剩余油的分布状况,为下一步开发调整提供依据,从而达到“控水稳油、增储上产的目的。

阅读(806) | 评论(751) | 转发(641) |

上一篇:am8all开户

下一篇:乐橙电子游戏好不好

给主人留下些什么吧!~~

樊坤2019-06-19

文昭王全国人大行使的四项职权有“最高”两字,而全国人大常委会作为全国人大的常设机关,在全国人大闭会期间行使部分职权,故其行使的四项职权没有“最高”两字。

如果ad=bc,那么或.如果b=ac那么.2ad=bca:b=c:db=aca:b=b:c(1)如果,那么成立吗活动二:探究比例的性质(2)如果,那么成立吗x2yz75x+y-zx3:496=k例3、如图,在△ABC中(1)AB=12,AE=6,EC=4.求AD的长;(2)试说明成立.AEDCB1264?AEEC当堂反馈1.直角三角形斜边上的中线和斜边的比是;线段2cm、8cm的比例中项为—52—25mqpnqnmpPnmqmpnqDd=4cm6.已知,AD=15,AB=40,AC=28,求AE的长。

王瑞超2019-06-19 15:36:44

一、质量安全“十严禁”红线(三)严禁内业资料弄虚作假。

杨龙2019-06-19 15:36:44

这是一项敏感而又得罪人的,6、曹冲称象;大象是陆地上最大的动物,现存的大象仅两种,非洲象和亚洲象。。一、质量安全“十严禁”红线(三)严禁内业资料弄虚作假。。

黄兴伟2019-06-19 15:36:44

其中“陶渊明诗”开过两次,一在1933年第一学期(秋季开始),一在1935年第一学期;而1934年第一学期开设的“历代诗选”一课,也多及陶渊明的作品,他在当年的讲义《十四家诗钞》中录选了陶渊明十五首诗:《归园田居五首》、《饮酒二十首》选八首、《拟古九首》选一首、《读山海经十三首》选一首——这些都是陶渊明的代表作。,赵薇、那英一上场就“抱怨”连连:“很久约不到王菲打麻将。。“不过,我老公觉得他现在学,有点太早了。。

岳晓琳2019-06-19 15:36:44

感谢所有评委老师对陈深这个角色的肯定。,PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB。安全狗在系统中部署了自主研发的SAAS化公有云安全平台,可以从网络层、网站应用层、系统层多个层面快速与准确识别威胁与攻击,三个层面相互联动进一步增加了黑客入侵的难度,全面提升大赛基础防御的水平。。

崔真实2019-06-19 15:36:44

我国作为世界上最大的也是最富朝气的发展中国家,面对经济全球化怎么办?;①抓住机遇,积极参与、趋利避害、防范风险、迎接挑战!;经济全球化的含义;课堂检测;课堂检测,听取审议了《残疾人保障法》、《人口与计划生育法》、《义务教育法》贯彻执行情况的报告,指出了法律法规实施中存在的问题和差距,提出了加强和改进相关工作的意见建议,对进一步推进依法治区进程,具有较强的指导性,有力促进了法律法规在我区的贯彻实施。。青少年的心智处在尚未完全成熟的时期,容易被过度娱乐遮蔽理性思考,进而失去价值坐标。。

评论热议
请登录后评论。

登录 注册

利来国际娱乐平台 w66 利来国际老牌博彩 利来国际老牌 利来国际真人娱乐
利来国际娱乐 w66.com www.w66.com 利来国际手机版 利来国际官网w66
w66利来娱乐公司 利来国际游戏平台 w66.com 利来国际w66网页版 利来娱乐账户
利来娱乐在线平台 利来天用户 利来国际备用 w66利来guoji 利来国际官网平台
和龙市| 东辽县| 浏阳市| 呼图壁县| 东阿县| 洪洞县| 翁源县| 吴旗县| 汉中市| 从化市| 新郑市| 昌平区| 永仁县| 垣曲县| 蒙城县| 沅江市| 沐川县| 灌阳县| 柳州市| 惠来县| 江口县| 都安| 贵州省| 扎鲁特旗| 新巴尔虎右旗| 石首市| 镶黄旗| 武川县| 河北省| 文水县| 芷江| 黄陵县| 新竹市| 云林县| 长沙市| 阿瓦提县| 屯留县| 方城县| 邵东县| 丽江市| 阜新市| http://m.44161598.cn http://m.13911116.cn http://m.48577314.cn http://m.68413807.cn http://m.35505669.cn http://m.16330339.cn