www lc8 com

由于仅蛋白质分子中含有S,而P几乎都存在于DNA中(搅拌的目的是使吸附在细

  • 博客访问: 857817
  • 博文数量: 841
  • 用 户 组: 普通用户
  • 注册时间:2019-03-23 21:05:10
  • 认证徽章:
个人简介

波罗申科警告说,海上冲突可能是一触即发的乌俄军事僵局激烈发展的前兆。

文章分类

全部博文(352)

文章存档

2015年(655)

2014年(121)

2013年(233)

2012年(38)

订阅

分类: 企业家在线

www lc8 com, 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂利来国际最给利的老牌这些是不少培训机构在推介课程时都会拿出来的两个理由。因会员行为引发其他会员或第三方投诉至行政机关或诉讼至司法机关的,若会员存在提供的联系方式过期、无效,或会员怠于处置、消极应对,或继续违规等情形,对阿里巴巴或其他用户造成或可能造成损失或不良影响的,阿里巴巴可根据产生或可能产生后果的严重程度采取店铺监管、账户限权等临时性管理措施。

浙江大学硕士学位论文目录3.2.2.1菌种的富集筛选与鉴定…………………………………………253.2.2.2挑选的菌株对PCB61的降解能力研究…………………………253.3结果与讨论……………………………………………………………………263.3.1分离茵的鉴定结果………………………………………………………..263.3.2高效降解菌的挑选………………………………………………………..283.3.3T29和W5的分类鉴定…………………………………………………..283.3.4生长曲线…………………………………………………………………..293.3.5两种菌对不同的碳源的利用情况……………………………………….303.4本章小结………………………………………………………………………314微生物降解PCBS性能研究………………………………………………………………..324.1引言…………………………………………………………………………….324.2材料与方法……………………………………………………………………324.2.1实验材料………………………………………………………………….324.2.2实验方法…………………………………………………………………..334.2.2.1添加不同碳源对微生物群落降解PCBl242的影响……………334.2.2.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响…………………………………………………………………….334.2.2.31PCB242对Bacillussp.W5的联苯和sp.T29和Corynebacterium苯甲酸趋药性的影响研究…………………………………………………………一334.2.2.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究….344.3结果与讨论……………………………………………………………………344.3.1添加不同碳源对微生物群落降解PCBl242的影响……………………344.3.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响………………………………………………………………..354.3.3PCBl242对Bacillussp.T29和Corynebacteriumsp.W5的联苯和苯甲酸趋药性的影响研究………………………………………………………………364.3.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究………….374.4本章小结………………………………………………………………………385全文研究结论与展望……………………………………………………………………39III浙江大学硕士学位论文目录5.1研究结论………………………………………………………………………395.2研究展望………………………………………………………………………395.3创新点…………………………………………………………………………………………………40参考文献………………………………………………………………………………………………….4l攻读硕士期间获得成果…………………………………………………………………….48泡沫混凝土行业正从无到有,由小到大,以迅猛的势头不断发展壮大。利来国际旗舰版(3)一颗坚强而自信的心销售会面临着无数的拒绝,打击,冷言冷语,只有你足够的勇敢和坚强,才能不被伤害。PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)

阅读(364) | 评论(240) | 转发(825) |
给主人留下些什么吧!~~

叶静能2019-03-23

向滈PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)

我的总结本组内互动学习氛围不好,有两位同学(向俊和罗鑫均)总是不按时完成作业;即使完成了也很不乐观,总是不认真,字迹马虎,背书也不积极,他两至今一没背,由于他们两个养成了习惯,我也很少去督促、关心他们。

达瓦欧珠2019-03-23 21:05:10

阿里巴巴集团自创立以来,一直致力于中国电子商务的发展,为了更好地满足淘宝网会员通过阿里巴巴中国站B类市场的批发进货需求,以及中国站会员在淘宝网的销售和个人消费需求,打通B类市场和C类市场,活跃网络经济环境,我们将在2012年9月5日实现阿里中国站和淘宝网互通,即:淘宝网、天猫、一淘会员帐号可以直接登录阿里巴巴中国站,并使用阿里巴巴中国站为您提供的服务,避免注册和记忆多个帐号和密码。

完颜旻2019-03-23 21:05:10

一、质量安全“十严禁”红线第三条规定,必须强化施工工序和现场管理,确保支(防)护到位,严禁支护滞后和安全步距超标。,在无锡搭建的电影拍摄空间为6000平方米,是《歌手》录制场地的五倍,工作人员达800人。。……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3。

义阳王石鉴2019-03-23 21:05:10

当时也不叫“开国大典”,而是称作“开国盛典”。,这仍然是把倾斜的伞。。……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3。

卫平公2019-03-23 21:05:10

总结与计划是相辅相成的,要以个人计划为依据,制定个人计划总是在个人总结经验的基础上进行的。,(2)按照白蚁及消杀司提供的定期服务表,对其的工作情况监督,确保消杀到位,对周边的白蚁检查到位,杜绝有偷工减料及消极待工现象。。其实,人们头脑中的这一印象并不准确。。

耿景艳2019-03-23 21:05:10

PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短),其次就是对法律条的熟悉,因本人所学专业不是法学,所以在工作中不断“恶补”相关法律知识,通过近一年的工作实践,对民事案涉及的相关法律条有了大体的了解和初步的掌握。。日媒表示日本的“仇韩言论”就是从那个时候开始的。。

评论热议
请登录后评论。

登录 注册

利来国际老牌博彩 利来国际AG旗舰店 利来国际官网 利来国际W66 利来最给利的网站
利来国际w66网页版 利来国际w66平台 利来娱乐老牌 利来国际官方网站 www.w66利来国际
利来国际AG旗舰店 利来国际官网平台 利来娱乐网址 w66利来娱乐 利来网上娱乐
利来客服 利来官方网站w66利来 国际利来旗舰厅 利来国际最老牌 利来国际老牌博彩手机
凤城市| 连平县| 绥中县| 黄梅县| 姜堰市| 九江市| 综艺| 西乡县| 广元市| 黄梅县| 剑河县| 松原市| 南宁市| 共和县| 阿拉尔市| 双峰县| 蒲城县| 西乌| 奎屯市| 顺义区| 怀来县| 波密县| 文山县| 星子县| 沙坪坝区| 揭西县| 曲水县| 连江县| 凤翔县| 册亨县| 和硕县| 肃南| 思茅市| 新兴县| 托克托县| 三门县| 双鸭山市| 土默特左旗| 新巴尔虎右旗| 深水埗区| 哈密市| http://m.23868310.cn http://m.36239485.cn http://m.43149878.cn http://m.25090684.cn http://m.96935231.cn http://m.77385990.cn