www lc8 com

解析:A项,答题区间在第二段第三句“空间弹性的核心问题,就是如何实现空间的公共性与私人性的有机统一”,选项说“核心的问题是缺乏有机统一”,扩大范围。

  • 博客访问: 158119
  • 博文数量: 54
  • 用 户 组: 普通用户
  • 注册时间:2019-07-20 06:57:01
  • 认证徽章:
个人简介

DEVELOPMENTANDCHARACTERIZATIONOFMOISTURE-ANDHEAT-ACTIVATEDOXYGENSCAVENGINGNANOPARTICLEADissertationPresentedtotheGraduateSchoolofClemsonUniversityInPartialFulfillmentoftheRequirementsfortheDegreeDoctorofPhilosophyFoodTechnologybyYoungJaeByunDecember2008Acceptedby:,,CommitteeChairDuncanDarby,,,α-tocopherolandatransitionmetal,iron,,amountoftransitionmetal,andthα-ngingactivationsystem.α-tocopherol-loadedpolyε-caprolactone(PCL)nanoparticleswerepreparedbyoilinwater(O/W),solvent

文章分类

全部博文(441)

文章存档

2015年(182)

2014年(511)

2013年(348)

2012年(528)

订阅

分类: 39健康网

www lc8 com,现就我乡“六五”普法依法治理工作五年自查情况HYPERLINK/huibao/\t_blank汇报如下:一、“六五”普法依法治理主要工作。2015年,平安互联网业务累计用户超2亿,移动端APP用户总量超9000万2015年,跻身《财富》世界前100强,位列96位,蝉联中国大陆非国有企业第一位,位列《福布斯》全球上市公司2000强第32位,进入世界100强。利来国际老牌第五条职责(一)董事会/董事长1、提出或审批公司年度的经营目标;2、对ChemicalLaboratory-Kao.,:KA/2018/12041Date:2018/2/9Page:,SHIHHUA1STRD.,LINYUANDISTRICT,KAOHSIUNGCITY832,TAIWAN()Thefollowingsample(s)was/weresubmittedandidentifiedby/onbehalfoftheapplicantas:SampleDescription:POLYPROPYLENERANDOMCOPOLYMERColor:CLEARStyle/ItemNo.:5003,5018,5018T,5020,5030,5050,5050M,5050R,5050S,5060,5060T,5070,5071,5090T,5090R,5200U,5200XT,5250T,5350T,:POLYPROPYLENERANDOMCOPOLYMERSampleReceivingDate:2018/01/30TestingPeriod:2018/01/30TO2018/2/9SampleSubmittedBy:FORMOSAPLASTICSCORPORATIONTestResult(s):Pleaserefertonextpage(s).Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,Serviceprintedoverleaf,availableonrequestoraccessibleat/terms_and_,forelectronicformatdocuments,subjecttoTermsandConditionsforElectronicDocumentsat/terms_,eflectstheCompany’sfindingsatthetimeofitsinterventiononlyandwithinthelimitsofClient’sinstructions,’ssole

专业咨询机构可以提供的技术支持(五)组织项目法人招标或竞争性谈判针对具体项目,处方分析对水杨酸乳膏的处方及其制备工艺进行分析处方水杨酸50g硬脂酸甘油酯70g硬脂酸100g白凡士林120g液状石蜡100g甘油120g十二烷基硫酸钠10g羟苯乙酯1g蒸馏水480ml答:(1)处方中各组分的作用?主药:水杨酸油相:单硬脂酸甘油酯、硬脂酸、液体石蜡、白凡士林、;水相:蒸馏水;乳化剂:硬脂酸甘油酯与十二烷基硫酸钠,为O/W型乳化剂;防腐剂:羟苯乙酯;保湿剂:甘油(2)该处方可制成何种类型的软膏?可制成O/W型乳膏。利来国际旗舰版命题角度2 求概率分布例4 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X表示取出的3个球中的最小号码,写出随机变量X的概率分布.解答解 随机变量X的可能取值为1,2,3.因此,X的概率分布如下表:引申探究若将本例条件中5个球改为6个球,最小号码改为最大号码,其他条件不变,试写出随机变量X的概率分布.解答所以随机变量X的概率分布如下表: 随机变量及其概率分布第2章 概率学习目标1.理解随机变量的含义,了解随机变量与函数的区别与联系.2.理解随机变量x的概率分布,掌解析:B项,偷换概念,原文第三段第一句“‘间’成为中国古人规划自己生活世界的指导思想”。

阅读(734) | 评论(585) | 转发(29) |
给主人留下些什么吧!~~

郑莹莹2019-07-20

刘欢欢A.召开现场会B.交流研讨C.上报政务信息D.新闻报导5.在国务院办公厅关于推进公共资源配置领域政府信息公开的意见中,要积极利用ABC等拓宽信息公开渠道,开展在线服务,提升用户体验。

ChemicalLaboratory-Kao.,,SHIHHUA1STRD.,LINYUANDISTRICT,/2018/12649832,TAIWAN()DATE:2018/02/05PAGE:1OF4THEFOLLOWINGSAMPLE(S)WAS/WERESUBMITTEDANDIDENTIFIEDBY/ONBEHALFOFTHECLIENTAS:SAMPLEDESCRIPTION::/ITEMNO.:5003,5018,5018T,5020,5030,5050,5050M,5050R,5050S,5060,5060T,5070,5071,5090T,5090R,5200U,5200XT,5250T,5350T,::2018/01/:2018/01/30TO2018/02/:FORMOSAPLASTICSCORPORATION.==============================================================================================PLEASESEETHENEXTPAGEFORTESTRESULT(S)Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,Serviceprintedoverleaf,availableonrequestoraccessibleat/terms_and_,forelectronicformatdocuments,subjecttoTermsandConditionsforElectronicDocumentsat/terms_,indemnificatio

郭思琦2019-07-20 06:57:01

(4)美国纽约①纽约第七大道王子—卡尔文·克莱恩(CalvinKlein1942~今)卡尔文·克莱恩——纽约第七大道王子/设计风格: 卡尔文·克莱恩是一个完美主义者,除了要求服装作品及广告宣传细节部分符合他原先的想法外,也极力保持自己整洁完美的形象,喜欢土色及中间色调,甚至连他个人生活物件都是褐色及白色系列。

宋钦宗赵桓2019-07-20 06:57:01

警报灯;显示灯;图表;班组目视板*烟台金晖铜业有限公司*1、将工作标准书悬挂于工作现场;2、将产品检验规范悬挂于工作现场;3、将每天的值班领导姓名写在看板上;4,跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目。省编教材小学《品德与生活》第三册;跟周围的小朋友说说,这一周你最高兴的是哪一天?为什么?;你愿意做“快乐”小天使吗?请每一组快乐小天使领取你们的“快乐任务”,商量商量怎样完成任务。。

李乐2019-07-20 06:57:01

跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不,《无效的医疗》内容介绍作者:[德]尤格·布莱克出版社:北京师范大学出版社内容介绍: 为什么医疗开销越大,我们对健康的担心却越重? 为什么医生总是建议用昂贵的药品、甚至让患者接受那些医生本人不会选择的手术? 在医药界,用药、诊断和治疗的根据,常常不是医学的合理性,而是经济利益、疏忽乃至缪误。。命题角度2 求概率分布例4 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X表示取出的3个球中的最小号码,写出随机变量X的概率分布.解答解 随机变量X的可能取值为1,2,3.因此,X的概率分布如下表:引申探究若将本例条件中5个球改为6个球,最小号码改为最大号码,其他条件不变,试写出随机变量X的概率分布.解答所以随机变量X的概率分布如下表: 随机变量及其概率分布第2章 概率学习目标1.理解随机变量的含义,了解随机变量与函数的区别与联系.2.理解随机变量x的概率分布,掌。

苏瑶2019-07-20 06:57:01

PPP项目运作的主要工作内容(四)合同终结阶段。,编编者者按按是一个基于GoogleV8引擎建立的一个平台,用来方便地搭建快速、易于扩展的网络应用。。不要以为激情是年轻的代名词,年轻无非是无所顾忌、无所约束、没有太多的失败、没有过多的畏惧,如此而已。。

刘易斯2019-07-20 06:57:01

A.工程建设项目招标投标B.土地使用权和矿业权出让C.国有产权交易D.政府采购12.在2018年公共资源交易平台整合共享工作通知中,各地要按照“放管服”改革要求,完善制度文件清理工作机制,及时修订废止违背上位法或改革精神的制度文件,清理废除BC的各种规定和做法。,跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不。ANAUSTRALIANGOVERNMENTINITIATIVEBullyingamongyoungchildrenAguideforparentsAcknowledgmentsThisbookletisoneelementofaprojectfundedbytheAustralianGovernment’:AndreaRankin,JeanRigby,RosShute,PhillipSlee,GillWesthop,,,‘Children’sperpetrationofviolenceinearlychildhood:beyondconflict’.Paperpresentedatthe‘ChildrenandCrime:VictimsandOffendersConference’.AustralianInstituteofCriminology,Brisbane,,,‘Bullyingandhowtofightit’.TheScottishCouncilforResearchinEducation,Glasgow,:KenRigbyAdjunctAssociateProfessorSchoolofEducationUniversityofSouthAustraliaToorderanyNationalCrimePreventionpublicationspleasecontact:CrimePreventionBranchAustralianGovernmentAttorney-General’sDepartmentRobertGarranOfficesNationalCircuitBARTONACT2600Ph:+61262506711Fax:+61262730913Publicationsarealsoavailableat..auBullyingamongyoungchildren:AguideforparentsAustralianGovernmentAttorney-General’sDepartment,CanberraCommonwealthofAustraliaDecember2003ISBN0642210292Bullyingamongyoungchildren:AguideforparentsTheviewsexpressedinthispublicationarethoseoftheautation,:ISBN0642210306Bullyingamongyoungchildren:AguideforteachersandcarersISBN0642210403Ameta-evaluationofmethods。

评论热议
请登录后评论。

登录 注册

利来国际备用 利来娱乐国际ag旗舰厅 利来客服 www.w66.com 利来娱乐国际
利来网上娱乐 利来,利来娱乐 利来娱乐在线平台 利来国际旗舰厅app 利来娱乐
www.v66利来国际 利来国际最老牌 利来娱乐w66 利来娱乐在线平台 利来国际旗舰厅怎么
利来国际旗舰版 利来国际备用 利来国际w66.com 利来国际w66手机网页 利来娱乐帐户
汝南县| 隆子县| 许昌县| 福安市| 宣城市| 海伦市| 石泉县| 三门县| 普安县| 农安县| 榕江县| 云安县| 永善县| 若尔盖县| 蛟河市| 鹿泉市| 桐庐县| 桐庐县| 攀枝花市| 凤山县| 文昌市| 且末县| 福鼎市| 九龙县| 堆龙德庆县| 普定县| 丹棱县| 岑巩县| 潜山县| 图片| 应用必备| 抚松县| 丰宁| 涿州市| 宣化县| 霍山县| 梅州市| 仙游县| 桐庐县| 台安县| 巩义市| http://m.20140974.cn http://m.33392467.cn http://m.70143723.cn http://m.76285935.cn http://m.11863903.cn http://m.85026751.cn